
AT&T Labs Technical Report TD-4ZCPZZ

Using the Fluhrer, Mantin, and Shamir Attack
to Break WEP

August 6, 2001

Adam Stubblefield John Ioannidis Aviel D. Rubin
Rice University AT&T Labs – Research, Florham Park, NJ

astubble@cs.rice.edu {ji,rubin}@research.att.com

c©AT&T Labs, 2001.

Using the Fluhrer, Mantin, and Shamir Attack
to Break WEP

Adam Stubblefield∗ John Ioannidis Aviel D. Rubin
Rice University AT&T Labs – Research, Florham Park, NJ

astubble@cs.rice.edu {ji,rubin}@research.att.com

Abstract

We implemented an attack against WEP, the link-layer security protocol
for 802.11 networks. The attack was described in a recent paper by Fluhrer,
Mantin, and Shamir. With our implementation, and permission of the net-
work administrator, we were able to recover the 128 bit secret key used in a
production network, with a passive attack. The WEP standard uses RC4 IVs
improperly, and the attack exploits this design failure. This paper describes
the attack, how we implemented it, and some optimizations to make the at-
tack more efficient. We conclude that 802.11 WEP is totally insecure, and
we provide some recommendations.

1 Introduction

Wireless networking has taken off, due in large part to the availability of the 802.11
standard. While another standard, Bluetooth, is also gaining in popularity, the
longer range and higher speeds achieved by 802.11 make it the protocol of choice
for wireless LANs. Office buildings, conferences, and even many residences now
offer 802.11 connectivity. The PC cards that are most often used in these networks
provide a security protocol called Wired Equivalent Privacy (WEP).

WEP is easy to administer. The device using the 802.11 card is configured
with a key, that in practice usually consists of a password or a key derived from a
password. The same key is deployed on all devices, including the access points.
The idea is to protect the wireless communication from devices that do not know
the key.

Borisov, Goldberg and Wagner demonstrated some security flaws in WEP [1].
They explained that WEP fails to specify how IVs for RC4 are specified. Several

∗Research done while a summer intern at AT&T Labs

1

PC cards reset IVs to zero every time they are initialized, and then increment them
by one for every use. This results in high likelihood that keystreams will be reused,
leading to simple cryptanalytic attacks against the cipher, and decryption of mes-
sage traffic. The authors verified this experimentally and describe other weaknesses
as well. For example, the space from which IVs are chosen is too small, virtually
guaranteeing reuse, and leading to the same cryptanalytic attacks just described.
The paper also shows that message authentication in WEP is broken.

Fluhrer, Mantin, and Shamir describe a passive ciphertext-only attack against
RC4 as used in WEP [2]. The attack exploits the method in which the standard
describes using IVs for the RC4 stream cipher. In their paper, the authors state,
Note that we have not attempted to attack an actual WEP connection, and hence
do not claim that WEP is actually vulnerable to this attack. Based on the descrip-
tion in their paper, we successfully implemented the attack, proving that WEP is
in fact completely vulnerable. The purpose of this paper is to describe our im-
plementation, along with some enhancements to improve the performance of the
attack.

2 Overview of the WEP attack

In this section we present an overview of the WEP protocol and review briefly how
the attack of Fluhrer, Mantin, and Shamir can be applied to WEP. For a detailed
description of WEP we refer the reader to the official 802.11 standard [4].

Encryption in WEP uses a secret key, k, shared between an access point and
a mobile node. To compute a WEP frame, the plaintext frame data, M, is first
concatenated with its checksum c(M), to produce M · c(M) (where · denotes con-
catenation). Then, a per packet initialization vector (IV) is prepended to the secret
key, k, to create the packet key, IV ·k. The RC4 stream cipher is then initialized us-
ing this packet key, and the output bytes of the cipher are exclusive-ored (denoted
⊕) with the checksummed plaintext to generate the ciphertext:

C = (M ·c(M))⊕RC4(IV ·k)

Since the IV is transmitted in the clear, if we are able to correctly guess the
first byte of M, we can apply the known IV attack of section 7.1 and appendix A
of Fluhrer, Mantin, and Shamir [2]. We give a brief description of the attack here,
but refer the reader to that paper for the details. We defer the discussion of how to
guess the first byte of the plaintext to Section 3.

To begin, we must describe the structure of the RC4 stream cipher (a full de-
scription can be found in [6]). RC4 consists of two parts, a key scheduling algo-
rithm and an output generator. In WEP, the key scheduling algorithm uses either

2

a 64-bit packet key (40-bit secret key plus 24-bit IV) or a 128-bit key (104-bit se-
cret key plus 24-bit IV) to set up the RC4 state array, S, which is a permutation
of {0, . . .,255}. The output generator uses the state array S as well as two coun-
ters, i and j, to create a pseudorandom sequence. The Fluhrer, Mantin, and Shamir
known IV attack utilizes the fact that, in some cases, knowledge of the IV and the
first output byte leaks information about the key bytes. They refer to these key-
leaking cases as resolved. It is simple to test whether a particular packet provides
an IV and output byte that result in a resolved condition, though we refer the reader
to the Fluhrer et. al. paper for the full explanation. By looking at a number of these
resolved cases, we can see a bias toward the true key bytes.

3 Implementation

In implementing this attack, we had three goals. First and foremost, we wanted
to verify that the attack could work in the real world. Second, we were interested
in how cheaply and easily the attack could be launched. Lastly, we wanted to see
what sort of improvements could be made to both the general RC4 attack and the
WEP attack in particular. In this section we report on our success at the first two
goals, while reserving discussion about attack optimizations to Section 4.

3.1 Simulating the Attack

Before trying to break WEP, we created a simulation of the RC4 attack to both ver-
ify our understanding of the weakness and to gather information about how many
resolved packets we could expect would be required when mounting the actual at-
tack. The coding of the simulated attack took under two hours, including a few
optimizations. The simulation showed that the attack was always able to recover
the full key when given 256 probable resolved cases.1 We also observed that al-
though 60 resolved cases (the number recommended in the Fluhrer et. al. paper)
was usually enough to determine a key byte, there were instances in which more
cases were required. Because at this point we had not thoroughly investigated how
accurately we would be able to determine the first output byte of the RC4 pseu-
dorandom sequence, we also simulated the effect that sometimes guessing wrong
would have on the attack. We were pleased to see that as long as the number of in-
correct guess was kept small, the correct key byte would still be returned correctly,
though sometimes more resolved cases were needed.

1Cases corresponding to IVs of the form (B+3, 255, N) as in the Fluhrer et. al. paper.

3

3.2 Capturing the Packets

Surprisingly, capturing WEP encrypted packets off of our wireless network proved
to be the most difficult part of the attack. There are a number of commercial soft-
ware programs that are able to both capture and decode 802.11 packets, such as
NAI’s “Sniffer” and Wildpacket’s “AiroPeek,” though both products cost thousands
of dollars. Because we wanted to show that the attack could be done by an adver-
sary with limited resources, we ordered a $100 Linksys wireless card, based on the
Intersil Prism II chipset. We made this choice because the Prism II allows much of
its computation to be completed in software and because there was a Linux driver
available that claimed to be able to grab raw WEP encrypted packets. Though we
did not know it at the time, this chipset has been used by others to mount dictionary
and brute force attacks against WEP.2

After many hardware headaches, we were able to make the card work in Linux
by using both the linux-wlan-ng prism2 driver3 and a modified version of
Tim Newsham’s patch to re-enable raw packet monitoring.4 We were then able
to use a modified version of the packet sniffer ethereal5 to capture raw WEP
encrypted packets and to decode the data necessary for our attack tool.

Even with the hardware and software problems we ran into, from the time that
we first decided to look at this problem, it took less than a week for the the card
to be ordered and shipped, the test-bed to be set up, the problems to be debugged,
and a full key to be recovered.

3.3 Mounting the Attack

The last piece in actually mounting the attack was determining the true value of
the first plaintext byte of each packet, so that we could could infer the first byte of
the pseudorandom sequence from the first ciphertext byte. We originally looked
at tcpdump output of decrypted traffic (using a correctly keyed card6), and were
planning on using packet length to differentiate between ARP and IP traffic (both
of which have well known first bytes in their headers) as these were by far the two
most common types of traffic on our network. After implementing this, however,
we discovered that the attack didn’t seem to work. We then tried hand decrypting
packets to determine whethertcpdump was working correctly and discovered that

2See Blackhat ‘01 presentation at http://www.lava.net/˜newsham/wlan/WEP_
password_cracker.ppt

3Available from http://www.linux-wlan.com/
4Available from http://www.lava.net/˜newsham/wlan/
5Available from http://www.ethereal.com/
6Note that a correctly keyed card is not needed; we simply used one to design the attack.

4

an additional 802.2 encapsulation header is added for both ARP and IP traffic.7

This discovery actually made the attack even easier, as all packets would now have
the same first plaintext byte (0xAA, the SNAP designation). Note that a correctly
keyed card is not needed for the attack; we simply used one to design the attack.

Although our actual attack used the improvements discussed in the next sec-
tion, we present an outline of how a naive attack could work here. It is interesting
to note that even this baseline version of the attack would still be successful in a
short period of time (a day or two at most) and with an even smaller amount of
computation when compared to the improved implementation, assuming that the
wireless network in question had a reasonable amount of traffic.

To begin, we collected a large number of packets from our wireless network.
To speed the process up for some of our experiments late at night when network
volume was low, we artificially increased the load on the wireless network by ping
flooding a wireless node. (We could have waited until more traffic was created; this
is not an active attack.) Because we are able to predict the value of the first byte
of any plaintext, the fact that we changed the makeup of the network traffic did
not affect these experiments. In looking at the IVs of these collected packets, we
discovered that the wireless cards use a simple counter to compute the IV, wherein
the first byte is incremented first. In section A.1 of Fluhrer et. al., the authors
postulate that 4,000,000 packets would be sufficient with this type of counter, we
found the number to be between 5,000,000 and 6,000,000 for our key. This number
is still not unreasonable, as we were able to collect that many packets in a few hours
on a partially loaded network.

4 Improving the attack

In this section we discuss several modifications that can be made to improve the
performance of the key recovery attack on WEP. While not necessary for the com-
promise to be effective, they can decrease both time and space requirements for an
attacker.

4.1 Choosing IVs

In the baseline attack (the one described in Fluhrer et. al.), only IVs of a particular
form are considered. However, we found that there are other IVs that can result in
a resolved state, and that testing all IVs instead of only the subset suggested by the
Fluhrer et. al. paper can be done in parallel with receiving packets. This conclusion

7We eventually traced this back to RFC 1042 [5].

5

was verified by Adi Shamir [7], who also noted that these packets appear more
often for higher key bytes.

4.2 Guessing Early Key Bytes

As the Fluhrer, Mantin, and Shamir attack works by building on previously discov-
ered key bytes, recovering early key bytes is critical. There are two approaches that
we tried both separately and together. The first utilized the way that the IVs were
generated, namely that we would receive packets that resolved for lots of differ-
ent key bytes before necessarily receiving enough resolving packets to predict the
early key bytes.8 We would therefore use the resolving cases that we had received
to narrow down the possibilities for the early key bytes. We were then able to test
candidate keys by determining if the WEP checksum on a decrypted packet turned
out correctly.

The second approach exploited the poor key management available in WEP
implementations. Since WEP keys have to be entered manually, we assumed that
instead of giving clients a long string of hex digits, a user memorable passphrase
would be used. After examining the test wireless cards at our disposal, we deter-
mined that the user-memorable passphrase is simply used raw as the key (i.e. the
ASCII is used; no hashing is done). Although hashing does not protect against a
dictionary attack, it would have helped in this circumstance, as we were able to
determine directly whether each key byte was likely to be part of a user memorable
passphrase by checking whether the byte value corresponded to an ASCII letter,
number, or punctuation symbol.

4.3 Special Resolved Cases

As Shamir pointed out to us, there are cases when a resolved case can provide an
even better indication as to a particular key byte. The following paragraph assumes
that the reader is familiar with the Fluhrer et. al. attack and uses the same notation
as that paper.

If there is a duplication among the three values at positions 1, x, and x +y (i.e.
there are only two distinct values), then the probability that these positions in the
S permutation remain unchanged jumps from e−3 ≈ 5% to e−2 ≈ 13%. We can
thus treat the evidence from these cases as about three times more convincing as a
standard resolved case.

8See Figure 6 of Fluhrer et. al.; resolved cases are much more likely to occur for later key bytes.

6

5 Conclusions

We were able to implement the attack described by Fluhrer et. al. in several hours.
It then took a few days to figure out which tools to use and what equipment to
buy to successfully read keys off of 802.11 wireless networks. Our attack used
off of the shelf hardware and software, and the only piece we provided was the
implementation of the RC4 attack, along with some optimizations. We believe that
we have demonstrated the ultimate break of WEP, which is the recovery of the
secret key by observation of traffic.

Given this attack, we believe that 802.11 networks should be viewed as inse-
cure. We recommend the following for people using such wireless networks.

• Assume that the link layer offers no security.

• Use higher-level security mechanisms such as IPsec [3] and SSH [8] for
security, instead of relying on WEP.

• Treat all systems that are connected via 802.11 as external. Place all access
points outside the firewall.

• Assume that anyone within physical range can communicate on the network
as a valid user. Keep in mind that an adversary may utilize a sophisticated
antenna with much longer range than found on a typical 802.11 PC card.

The experience with WEP shows that it is difficult to get security right. Flaws
at every level, including protocol design, implementation, and deployment, can
render a system completely vulnerable. Once a flawed system is popular enough to
become a target, it is usually a short time before the system is defeated in the field.

Acknowledgments

We thank Bill Aiello, Steve Bellovin, Bob Miller, Adi Shamir, Dave Wagner, and
Dan Wallach for helpful discussions.

We informed Stuart Kerry, the 802.11 Working Group Chair, that we success-
fully implemented the Fluhrer, et al. attack. Stuart replied that the 802.11 Working
Group is in the process of revising the security, among other aspects, of the standard
and appreciates this line of work as valuable input for developing robust technical
specifications.

7

References

[1] BORISOV, N., GOLDBERG, I., AND WAGNER, D. Intercepting mobile com-
munications: The insecurity of 802.11. MOBICOM 2001 (2001).

[2] FLUHRER, S., MANTIN, I., AND SHAMIR, A. Weaknesses in the key schedul-
ing algorithm of RC4. Eighth Annual Workshop on Selected Areas in Cryptog-
raphy (August 2001).

[3] KENT, S., AND ATKINSON, R. Security architecture for the Internet proto-
col. Request for Comments 2401, Internet Engineering Task Force, November
1998.

[4] L. M. S. C. OF THE IEEE COMPUTER SOCIETY. Wireless LAN medium
access control (MAC) and physical layer (PHY) specifications. IEEE Standard
802.11, 1999 Edition (1999).

[5] POSTEL, J., AND REYNOLDS, J. K. Standard for the transmission of IP data-
grams over IEEE 802 networks. Request for Comments 1042, Internet Engi-
neering Task Force, Feb. 1988.

[6] SCHNEIER, B. Applied Cryptography - Protocols, Algorithms, and Source
Code in C. John Wiley & Sons, Inc., 1994.

[7] SHAMIR, A. Personal communications, 2001.

[8] YLONEN, T. SSH - secure login connections over the Internet. USENIX Secu-
rity Conference VI (1996), 37–42.

8

